

A Machine Learning Approach to Protect Electronic
Devices from Damage Using the Concept of Outlier

Sunanda Das, Muhammad Sheikh Sadi, Md. Ahsanul Haque, Md. Milon Islam
Department of Computer Science and Engineering
Khulna University of Engineering & Technology

Khulna-9203, Bangladesh
sunanda@cse.kuet.ac.bd, sadi@cse.kuet.ac.bd, ahsanulhaque865@gmail.com, milonislam@cse.kuet.ac.bd

Abstract— Most of the appliances that we used in our

everyday life are electronic devices, i.e. TV, Air Conditioner,
Refrigerator, etc. Excessive voltage, current, temperature, etc.
can harm the devices and in extreme cases, the devices can be
completely damaged. We proposed a system to monitor the
electrical behaviors of the devices in real-time. The system is
trained with an unlabeled dataset and capable of identifying
outliers. We have used a clustering technique, i.e. Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) to
learn the label of a dataset and then apply machine learning
algorithms, i.e. Support Vector Machine (SVM) and Decision
Tree to predict the label of the new data. From the prediction,
the system determines whether the device is operating in safe
mode or not. In this work, we have achieved the accuracy of
98.61% in detecting outliers using SVM with ‘rbf’ kernel.
Hence, if the device operates beyond safe mode, we can shut
down the device.

Keywords—Outlier; Outlier Detection; Clustering; Density-
based Clustering; DBSCAN; Support Vector Machine; Decision
Tree.

I. INTRODUCTION

People depend on the use of electronic devices in their
everyday life. Most of the cases, the end users cannot identify
the poor performance of the device and can only understand
the weak performance when the device isn’t working any
longer. Hence, we need to find a way to protect these devices.

An outlier is an observation point or a set of observation
points that have different properties and are inconsistent with
other observations [1]. They are generated by any kind of
disturbances in the system. Hence, outliers indicate the
erroneous condition of the system. Outliers detection
techniques try to find unusual patterns in the system. There are
various approaches like distance-based approaches, depth-
based approaches, density-based approaches, deviation-based
approaches, etc. to detect outliers in the system [2].

In this work, a density-based approach, i.e. DBSCAN is
used to detect outlier. DBSCAN is a hierarchical clustering
method and can determine the number of clusters
automatically. Moreover, DBSCAN can successfully identify
arbitrary shaped cluster. This work describes an advanced
system which can monitor the electrical characteristics of the
device and identify disturbances like overvoltage, flicker, etc.
This work considers these disturbances as the outlier and
proposes an effective way to detect it. Then, supervised
learning algorithms, i.e., SVM, Decision Tree are used for
training a model to predict a new sample. Hence, we can
decide whether the new sample data is an outlier or not.

The remaining part of the paper is organized as follows:

Section II demonstrated the related works that have been done

in this field. The proposed methodology with some theoretical
explanations is investigated in Section III. The result is
illustrated in details with some performance measures in
Section IV. The conclusion of the paper is drawn in Section
V.

II. RELATED WORK

For a system, outlier or anomaly may come at any time
and can cause significant harm to the system. In case of
protecting the system, we need to detect the outliers. In recent
years, outlier detection has drawn considerable attention in the
research community. For identifying outliers in feature
spaces, Eskin et al. [3] proposed a system using different
machine learning techniques. These techniques include one
class SVM, K-nearest neighbor, and cluster-based estimation.
They used these algorithms to identify the points that are in
the sparse areas. Among the three algorithms, they obtained
the detection rate of 98% and a false positive rate of 10% for
SVM over the KDD Cup 1999 Data. Ester et al. [4]
investigated the effectiveness of DBSCAN. They concluded
that DBSCAN is good at detecting outlier and discovering a
cluster of arbitrary shape. Their experiment on SEQUOIA
2000 benchmark data shows that DBSCAN outperforms the
well-known algorithm CLARANS (Clustering Large
Applications based on RANdomized Search) by a factor of at
least 100 regarding efficiency.

For unsupervised anomaly detection, Kingsly Leung and
Christopher Leckie [5] presented fpMAFIA, a new density-
based and grid-based clustering algorithm over the 1999 KDD
Cup data set. Their results indicate that their new approach
fpMAFIA able to achieve a high detection rate while it suffers
from a high false positive rate compared to the other methods.
Bakar et al. [6] experimented different techniques like linear
regression, control chart and Manhattan distance to detect
outliers. Their experimental results demonstrate that the
control chart technique gives reliable results in detecting
outliers than linear regression. Ramaswamy et al. [7]
demonstrated a profoundly efficient partition-based algorithm
for discovering outliers. Their algorithm first partitions the
input data set into disjoint subsets and as soon as it concludes
that they do not include outliers then, the algorithm prunes
entire partitions. Breunig et al. [8] talked about LOF (Local
Outlier Factor). According to them, each object has its own
LOF. The factor depends on how isolated the object is
regarding its surrounding neighbors. Their outcome shows
that the approach is very assuring in recognizing significant
local outliers.

Arning et al. [9] presented a linear algorithm to detect
deviation in data. Their investigation reveals that the
effectiveness of the algorithm mainly depends on the

dissimilarity function. A dissimilarity function catches how
different is a new data from the data items seen previously.
For distinguishing outliers, Jiang et al. [10] suggested a two-
phase clustering technique. In the first phase, they used a
modified k-means algorithm. In the second phase, they
applied an OFP (Outlier Finding Process) for finding outliers
in the clusters that are generated by phase one. Hawkins et al.
[11] suggested a Replicator Neural Networks (RNN) based
outlier detection approach. An RNN is trained on sampled
dataset so that it can predict the new data. This approach
identifies cluster labels which are used to interpret the
generated outliers.

III. THE PROPOSED METHODOLOGY FOR OUTLIER DETECTION

The primary objective of the work is to determine the
outliers of the electronic devices. Fig. 1 illustrates the detailed
design of the proposed methodology. The main steps of the
methodology include dataset preparation, preprocessing,
DBSCAN clustering to detect the outliers and learn the label
of the outlier and normal data, from that labeled dataset,
predict new samples using Support Vector Machine (SVM)
and Decision Tree.

A. Dataset Preparation

Ohm’s law illustrates the relationship between current,
voltage, and resistance. It informs us that the current i,
passing through a circuit is directly proportional to the
voltage v, and inversely proportional to the resistance r.

Fig. 1. Proposed methodology of the system.

Fig. 2. The generated dataset for the system.

 A synthetic dataset is prepared for the work. For

preparing the dataset, we have used the (1) and randomly
generate v and r and then calculate the corresponding i. The
dataset contains two features, i.e., voltage (v) and current (i).
Fig. 2 illustrates the generated dataset.

B. Preprocessing

The real-world data can be noisy and sometimes there are
missing values in the dataset. The amount of noise and the
number of missing values mainly depend on how we collect
the data. A large amount of the datasets that are used to solve
a machine learning problem need to be handled carefully
[12]. For preprocessing, we have used z-score normalization.
We get the rescaled features after using the standardization
i.e. normalization. Standardizing the features is vital for our
dataset as the dataset has measurements on different units.
The z-score of a sample x is estimated as:

z = (x-µ)/σ (2)

where µ denotes the mean of the training samples, and σ
denotes the standard deviation of the training samples.

C. Clustering and Learning the label of the dataset

Clustering is mainly used for grouping objects that have
the same kind of properties [13]. There are many techniques
for clustering objects depending on dataset’s perspective. In
this work, DBSCAN is applied for clustering purpose.
DBSCAN discovers neighbors, i.e. the member of the same
cluster by using two parameters, i.e. MinPts and radius ɛ. The
formation of a cluster depends on the notions of directly
density-reachability, density-reachability and density-
connectivity of points [14]. A cluster can be formed as the
maximal set of ‘density connected points’ in the feature
space.

Let, consider two points p, q. From Fig. 3 it can be
inferred that, q is directly density-reachable from p regarding
ɛ if and only if q is in p’s ɛ-neighborhood. q is density
reachable from p regarding ɛ if there is a series of points p1,
…, pn in such a way that p1 = p, pn = q and for each i= 2, . . .,
n it is true that pi is directly density-reachable from pi-1

regarding ɛ. q is density connected from p regarding ɛ if and
only if there is a point m such that q is density reachable from
m and p is also density reachable from m [15].

i = v/r (1)

Voltage (V)

C
u

rr
en

t
(A

)

(a) q is directly density reachable from p

(b) q is density reachable from p

(c) q is density connected from p

Fig. 3. The concepts of directly density reachability, density reachability
and density connectedness of points.

DBSCAN defines different classes of points as followings
 Core point
 Border point
 Outlier

Let, u be another new point. u can be a core point if its
neighborhood defined by radius ɛ contains at least or more
points than the number of points defined by parameter
MinPts. u can be a border point if it a member of a cluster and
its ɛ neighborhood contain less points than MinPts but u is
still density reachable by other points in that cluster. u will be
an outlier if it is not a core point and at the same time not a
border point. Fig. 4 represents the notion of core point, border
point, and outlier. Hence, it can be realized that, all the points
inside the same cluster are respectively density connected and
if a point is density reachable from any member point of that
cluster the point is also a member of that cluster as well.

 We have used DBSCAN in our dataset. It finds the
number of clusters automatically and also finds the outlier. It
also returns the labels of the calculated clusters and outlier.
Hence, we learn the label and use a predictive learning
algorithm, i.e. SVM (Support Vector Machine) and Decision
Tree to predict the label of the newly arrived data.

Fig. 4. The concept of core point, border point and outlier.

Fig. 5. Support vector points and margin width of hyperplane of SVM.

D. Prediction of outlier

Support Vector Machine (SVM) is a supervised learning
algorithm in machine learning which is used for the
classification problem. The main ideology behind the concept
of SVM is finding the optimal hyperplane that confidently
separates different classes [16].

The closest points to the hyperplane consist the support
vector points. The distance between the support vector points
and the hyperplane is called the margin. Fig. 5 shows support
vector points and margin width of hyperplane for SVM. The
support vector points play an important role for finding the
hyperplane that maximizes margin width. All other points are
irrelevant for finding the hyperplane.

 Let, n be the number of dimensions. Thus, the equation of
the hyperplane can be given as the following

y = w0 + w1x1 + w2x2 + w3x3 + . . . (3)
 = w0 + ∑ wixi

n
i=1

 = w0 + wTX
 = b + wTX

where y is the outcome, b is the biased term (b = w0), xi are
the attribute values. The weights wi will be learned by the
algorithm. In (3) wi are the parameters that will determine the
hyperplane [17].

Decision Tree is a very popular algorithm for
classification in machine learning. To develop a tree, we need
to choose features and conditions for splitting along with
stopping criteria [18]. For classification, different split point
is considered using a cost function. The split is selected that
has the lowest cost. Gini score is considered as a cost function
for classification.

G = sum(pk * (1 -  pk)) (4)
Here, pk is the proportion of same class inputs present in a

particular group. Gini score decides whether a split is good or
not by estimating how mixed the response classes are in the
groups formed by the split. When a group contains all the
member from the same class then pk is either 0 or 1 and G = 0.
The performance of Decision Tree can be increased by pruning.
It involves removing the branch that has less important features.

As we already generate label using DBSCAN, we train
the dataset using SVM and Decision Tree. For model
evaluation confusion matrix, accuracy and precision are used.
Confusion matrix is used to decide the performance of a
classification model. Accuracy, precision evaluates the

output quality of the classifier. Confusion matrix is formed
using TP, TN, FP, FN. where,

TP = True Positive
TN = True Negative
FP = False Positive
FN = False Negative

 For calculating accuracy (Acc) and precision (Prec), the
following formulas are used.

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
 (5)

 Precision (Prec) =
TP

TP + FP
 (6)

IV. RESULT ANALYSIS

 The system is implemented in the python environment
using ‘scikit-learn’ which is a machine learning library. The
synthetic dataset that we generated by using (1), it is not
possible to directly apply a supervised learning algorithm on
the dataset as it has no label. We standardize the features of
the dataset by using (2). Then, we apply DBSCAN on the
dataset with MinPts = 3, radius ɛ = 0.3 and choose Euclidean
metric for the DBSCAN to perform its clustering.

Fig. 6 illustrates the result of applying DBSCAN on the
dataset. Here, the black points represent the outlier. All the
other colored points are members of different normal classes.
In addition, Fig. 6 also shows that there are three normal
classes (class 0, class 1 and class 2). After performing
DBSCAN on the dataset, we get the label of the normal data
as well as the outlier. Now, as we know the label of the dataset,
we apply supervised learning algorithms i.e. SVM and
Decision Tree. Fig. 7 depicts the result of applying SVM and
Decision Tree on the labeled dataset.

Fig. 6. Result of using DBSCAN (MinPts = 3, radius ɛ = 0.3, metric =
‘euclidean’) on the dataset.

Here, SVM and Decision Tree are used as classifier. For
SVM, three different kernels i.e. linear, radial basis function
(‘rbf’) and polynomial (‘poly’) are used. Different kernels are
used to see which kernel can perform better. We used
confusion matrix, accuracy and precision to evaluate the
models. Table I and Table II represent the normalized
confusion matrix for SVM and Decision Tree respectively.
SVM with linear kernel predicts 50% of the outliers correctly
and predict 50% as class 1.

All the other classifiers correctly predict the outlier. As our
main concern is predicting the outlier, if a classifier predicts
class 0 as class 1 or class 1 as class 2 it will cause no harm to
the system.

 The accuracy and precision are calculated using the (5)
and (6) respectively. Fig. 8 illustrates the measure of accuracy
and precision for training and testing phase of different
classifiers. Table III contains the summary of accuracy and
precision of different models. It shows that, in testing phase
SVM with ‘rbf’ kernel has the highest accuracy and precision
i.e. 98.61% and 99.60% respectively. Decision Tree classifier
also performs well in the testing phase with the accuracy of
97.22% and precision of 94.59%.

(a) SVM (kernel = ‘linear’) (b) SVM (kernel = ‘rbf’,

gamma = 0.5)
(c) SVM (kernel = ‘poly’,

degree = 3)
(d) Decision Tree

 Fig. 7. Result of applying different classifier on the labeled dataset (different colors represent different classes).

TABLE I. NORMALIZED CONFUSION MATRIX FOR SVM

SVM (kernel = ‘linear’) SVM (kernel = ‘rbf’, gamma = 0.5) SVM (kernel = ‘poly’, degree = 3)

outlier class 0 class 1 class 2 outlier class 0 class 1 class 2 outlier class 0 class 1 class 2

outlier 0.50 0.00 0.50 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

class 0 0.00 0.98 0.00 0.02 0.00 1.00 0.00 0.00 0.00 0.98 0.00 0.02

class 1 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00

class 2 0.00 0.80 0.00 0.20 0.00 0.20 0.00 0.80 0.00 0.20 0.00 0.80

Voltage (V)

C
u

rr
en

t
(A

)

TABLE II. NORMALIZED CONFUSION MATRIX FOR
DECISION TREE

Decision Tree

outlier class 0 class 1 class 2

outlier 1.00 0.00 0.00 0.00

class 0 0.00 0.98 0.00 0.02

class 1 0.00 0.00 1.00 0.00

class 2 0.00 0.00 0.20 0.80

TABLE III. PERFORMANCE MEASURE INDICES OF OUTLIER
DETECTION SYSTEM

Algorithm Kernel

Training Phase Testing Phase

Acc
(%)

Prec
(%)

Acc
(%)

Prec
(%)

SVM

Linear 97.68 94.51 91.67 79.71

RBF 100 100 98.61 99.60

Polynomial 100 100 97.22 94.59

Decision
Tree

- 100 100 97.22 94.59

From Table III it is evident that if we compare the

different models that have been employed on the system,
SVM with ‘rbf’ kernel performs admirably in both training
and testing phase with respect to other models.

(a) Training Phase

(b) Testing Phase

Fig. 8. Accuracy and precision for training and testing phase of different
classifiers where L_SVM, R_SVM, P_SVM, DT represent SVM
(kernel = ‘linear’), SVM (kernel = ‘rbf’), SVM (kernel = ‘poly’), and
Decision Tree respectively.

V. CONCLUSIONS

 Protecting electronic devices from damage is very
important as most of the devices are expensive. In this
work, we focused on developing a system that not only
detects outlier but also predicts whether a new current,
voltage pair is an outlier or not. For outlier detection, a
density-based clustering approach DBSCAN is used which
can detect any arbitrary shaped cluster. Then, we develop
models based on SVM and Decision Tree. We also provide
a detailed performance measure for SVM with different
kernels and Decision Tree. In the testing phase, SVM with
‘rbf’ kernel ends up with the highest accuracy of 98.61%.
The performance shows that the proposed system will be
quite helpful in protecting electronic devices.

REFERENCES

[1] V. Hodge and J. Austin, “A survey of outlier detection
methodologies,” Artificial intelligence review, vol. 22, no. 2, pp. 85–
126, 2004.

[2] H.-P. Kriegel, P. Krӧger, and A. Zimek, “Outlier detection
techniques,” Tutorial at KDD, vol. 10, 2010.

[3] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, “A
geometric framework for unsupervised anomaly detection,” in
Applications of data mining in computer security, ed: Springer, pp.
77-101, 2002.

[4] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, no. 34, pp. 226–231, 1996.

[5] K. Leung and C. Leckie, “Unsupervised anomaly detection in
network intrusion detection using clusters,” in Proceedings of the
Twenty-eighth Australasian conference on Computer Science-
Volume 38. Australian Computer Society, Inc., pp. 333–342, 2005.

[6] Z. A. Bakar, R. Mohemad, A. Ahmad, and M. M. Deris, “A
comparative study for outlier detection techniques in data mining,”
in Cybernetics and Intelligent Systems, 2006 IEEE Conference on.
IEEE, pp. 1–6, 2006.

[7] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in ACM Sigmod Record, vol.
29, no. 2. ACM, pp. 427–438, 2000.

[8] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof:
identifying density-based local outliers,” in ACM sigmod record,
vol. 29, no. 2. ACM, pp. 93–104, 2000.

[9] A. Arning, R. Agrawal, and P. Raghavan, “A linear method for
deviation detection in large databases.” in KDD, vol. 1141, no. 50,
pp. 972–981, 1996.

[10] M.-F. Jiang, S.-S. Tseng, and C.-M. Su, “Two-phase clustering
process for outliers detection,” Pattern recognition letters, vol. 22,
no. 6-7, pp. 691–700, 2001.

[11] S. Hawkins, H. He, G. Williams, and R. Baxter, “Outlier
detection using replicator neural networks,” in International
Conference on Data Warehousing and Knowledge Discovery.
Springer, pp. 170–180, 2002.

[12] M. R. Chmielewski and J. W. Grzymala-Busse, “Global
discretization of continuous attributes as preprocessing for machine
learning,” 1996.

[13] P. Berkhin, “A survey of clustering data mining techniques,” in
Grouping multidimensional data. Springer, pp. 25–71, 2006.

[14] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, no. 34, pp. 226–231, 1996.

[15] N. Schlitter, T. Falkowski et al., “Dengraph-ho: Density-based
hierarchical community detection for explorative visual network
analysis,” in Research and Development in Intelligent Systems
XXVIII. Springer, pp. 283–296, 2011.

[16] A. J. Smola and B. Schӧlkopf, “A tutorial on support vector
regression,” Statistics and computing, vol. 14, no. 3, pp. 199–222,
2004.

[17] K.-j. Kim, “Financial time series forecasting using support vector
machines,” Neurocomputing, vol. 55, no. 1-2, pp. 307–319, 2003

90

92

94

96

98

100

L_SVM R_SVM P_SVM DT

Acc Prec

0

20

40

60

80

100

L_SVM R_SVM P_SVM DT

Acc Prec

[18] S. R. Safavian and D. Landgrebe, “A survey of decision tree
classifier methodology,” IEEE transactions on systems, man, and
cybernetics, vol. 21, no. 3, pp. 660–674, 1991.

