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Abstract— Most of the appliances that we used in our 

everyday life are electronic devices, i.e. TV, Air Conditioner, 
Refrigerator, etc. Excessive voltage, current, temperature, etc. 
can harm the devices and in extreme cases, the devices can be 
completely damaged. We proposed a system to monitor the 
electrical behaviors of the devices in real-time. The system is 
trained with an unlabeled dataset and capable of identifying 
outliers. We have used a clustering technique, i.e. Density-Based 
Spatial Clustering of Applications with Noise (DBSCAN) to 
learn the label of a dataset and then apply machine learning 
algorithms, i.e. Support Vector Machine (SVM) and Decision 
Tree to predict the label of the new data. From the prediction, 
the system determines whether the device is operating in safe 
mode or not. In this work, we have achieved the accuracy of 
98.61% in detecting outliers using SVM with ‘rbf’ kernel. 
Hence, if the device operates beyond safe mode, we can shut 
down the device. 

Keywords—Outlier; Outlier Detection; Clustering; Density-
based Clustering; DBSCAN; Support Vector Machine; Decision 
Tree. 

I. INTRODUCTION  

People depend on the use of electronic devices in their 
everyday life. Most of the cases, the end users cannot identify 
the poor performance of the device and can only understand 
the weak performance when the device isn’t working any 
longer. Hence, we need to find a way to protect these devices. 

An outlier is an observation point or a set of observation 
points that have different properties and are inconsistent with 
other observations [1]. They are generated by any kind of 
disturbances in the system. Hence, outliers indicate the 
erroneous condition of the system. Outliers detection 
techniques try to find unusual patterns in the system. There are 
various approaches like distance-based approaches, depth-
based approaches, density-based approaches, deviation-based 
approaches, etc. to detect outliers in the system [2].  

In this work, a density-based approach, i.e. DBSCAN is 
used to detect outlier. DBSCAN is a hierarchical clustering 
method and can determine the number of clusters 
automatically. Moreover, DBSCAN can successfully identify 
arbitrary shaped cluster. This work describes an advanced 
system which can monitor the electrical characteristics of the 
device and identify disturbances like overvoltage, flicker, etc. 
This work considers these disturbances as the outlier and 
proposes an effective way to detect it. Then, supervised 
learning algorithms, i.e., SVM, Decision Tree are used for 
training a model to predict a new sample. Hence, we can 
decide whether the new sample data is an outlier or not. 

 
The remaining part of the paper is organized as follows: 

Section II demonstrated the related works that have been done 

in this field. The proposed methodology with some theoretical 
explanations is investigated in Section III. The result is 
illustrated in details with some performance measures in 
Section IV. The conclusion of the paper is drawn in Section 
V. 

II. RELATED WORK 
 

For a system, outlier or anomaly may come at any time 
and can cause significant harm to the system. In case of 
protecting the system, we need to detect the outliers. In recent 
years, outlier detection has drawn considerable attention in the 
research community.  For identifying outliers in feature 
spaces, Eskin et al. [3] proposed a system using different 
machine learning techniques. These techniques include one 
class SVM, K-nearest neighbor, and cluster-based estimation. 
They used these algorithms to identify the points that are in 
the sparse areas. Among the three algorithms, they obtained 
the detection rate of 98% and a false positive rate of 10% for 
SVM over the KDD Cup 1999 Data. Ester et al. [4] 
investigated the effectiveness of DBSCAN. They concluded 
that DBSCAN is good at detecting outlier and discovering a 
cluster of arbitrary shape. Their experiment on SEQUOIA 
2000 benchmark data shows that DBSCAN outperforms the 
well-known algorithm CLARANS (Clustering Large 
Applications based on RANdomized Search) by a factor of at 
least 100 regarding efficiency. 

For unsupervised anomaly detection, Kingsly Leung and 
Christopher Leckie [5] presented fpMAFIA, a new density-
based and grid-based clustering algorithm over the 1999 KDD 
Cup data set. Their results indicate that their new approach 
fpMAFIA able to achieve a high detection rate while it suffers 
from a high false positive rate compared to the other methods. 
Bakar et al. [6] experimented different techniques like linear 
regression, control chart and Manhattan distance to detect 
outliers. Their experimental results demonstrate that the 
control chart technique gives reliable results in detecting 
outliers than linear regression. Ramaswamy et al. [7] 
demonstrated a profoundly efficient partition-based algorithm 
for discovering outliers. Their algorithm first partitions the 
input data set into disjoint subsets and as soon as it concludes 
that they do not include outliers then, the algorithm prunes 
entire partitions. Breunig et al. [8] talked about LOF (Local 
Outlier Factor). According to them, each object has its own 
LOF. The factor depends on how isolated the object is 
regarding its surrounding neighbors.  Their outcome shows 
that the approach is very assuring in recognizing significant 
local outliers. 

Arning et al. [9] presented a linear algorithm to detect 
deviation in data. Their investigation reveals that the 
effectiveness of the algorithm mainly depends on the 



 
 

dissimilarity function. A dissimilarity function catches how 
different is a new data from the data items seen previously. 
For distinguishing outliers, Jiang et al. [10] suggested a two-
phase clustering technique. In the first phase, they used a 
modified k-means algorithm. In the second phase, they 
applied an OFP (Outlier Finding Process) for finding outliers 
in the clusters that are generated by phase one. Hawkins et al. 
[11] suggested a Replicator Neural Networks (RNN) based 
outlier detection approach. An RNN is trained on sampled 
dataset so that it can predict the new data. This approach 
identifies cluster labels which are used to interpret the 
generated outliers. 

III. THE PROPOSED METHODOLOGY FOR OUTLIER DETECTION 

The primary objective of the work is to determine the 
outliers of the electronic devices. Fig. 1 illustrates the detailed 
design of the proposed methodology. The main steps of the 
methodology include dataset preparation, preprocessing, 
DBSCAN clustering to detect the outliers and learn the label 
of the outlier and normal data, from that labeled dataset, 
predict new samples using Support Vector Machine (SVM) 
and Decision Tree.   

A. Dataset Preparation 

Ohm’s law illustrates the relationship between current, 
voltage, and resistance. It informs us that the current i, 
passing through a circuit is directly proportional to the 
voltage v, and inversely proportional to the resistance r. 

 

 
Fig. 1. Proposed methodology of the system. 

 

 
Fig. 2. The generated dataset for the system. 

 
 A synthetic dataset is prepared for the work. For 

preparing the dataset, we have used the (1) and randomly 
generate v and r and then calculate the corresponding i. The 
dataset contains two features, i.e., voltage (v) and current (i). 
Fig. 2 illustrates the generated dataset.  

B. Preprocessing 

The real-world data can be noisy and sometimes there are 
missing values in the dataset. The amount of noise and the 
number of missing values mainly depend on how we collect 
the data. A large amount of the datasets that are used to solve 
a machine learning problem need to be handled carefully 
[12]. For preprocessing, we have used z-score normalization. 
We get the rescaled features after using the standardization 
i.e. normalization. Standardizing the features is vital for our 
dataset as the dataset has measurements on different units. 
The z-score of a sample x is estimated as: 

 
z = (x-µ)/σ (2) 

 
where µ denotes the mean of the training samples, and σ 
denotes the standard deviation of the training samples. 

C. Clustering and Learning the label of the dataset 

Clustering is mainly used for grouping objects that have 
the same kind of properties [13]. There are many techniques 
for clustering objects depending on dataset’s perspective. In 
this work, DBSCAN is applied for clustering purpose. 
DBSCAN discovers neighbors, i.e. the member of the same 
cluster by using two parameters, i.e. MinPts and radius ɛ. The 
formation of a cluster depends on the notions of directly 
density-reachability, density-reachability and density-
connectivity of points [14]. A cluster can be formed as the 
maximal set of ‘density connected points’ in the feature 
space. 

Let, consider two points p, q. From Fig. 3 it can be 
inferred that, q is directly density-reachable from p regarding 
ɛ if and only if q is in p’s ɛ-neighborhood. q is density 
reachable from p regarding ɛ if there is a series of points p1, 
…, pn in such a way that p1 = p, pn = q and for each i= 2, . . ., 
n it is true that pi is directly density-reachable from pi-1 

regarding ɛ. q is density connected from p regarding ɛ if and 
only if there is a point m such that q is density reachable from 
m and p is also density reachable from m [15].  

 
 

 

i = v/r (1) 
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(a) q is directly density reachable from p 

 
(b) q is density reachable from p 

 
(c) q is density connected from p 

 
Fig. 3. The concepts of directly density reachability, density reachability 
and density connectedness of points. 

 
DBSCAN defines different classes of points as followings 
 Core point 
 Border point  
 Outlier 

Let, u be another new point. u can be a core point if its 
neighborhood defined by radius ɛ contains at least or more 
points than the number of points defined by parameter 
MinPts. u can be a border point if it a member of a cluster and 
its ɛ neighborhood contain less points than MinPts but u is 
still density reachable by other points in that cluster. u will be 
an outlier if it is not a core point and at the same time not a 
border point. Fig. 4 represents the notion of core point, border 
point, and outlier. Hence, it can be realized that, all the points 
inside the same cluster are respectively density connected and 
if a point is density reachable from any member point of that 
cluster the point is also a member of that cluster as well. 
 

 We have used DBSCAN in our dataset. It finds the 
number of clusters automatically and also finds the outlier. It 
also returns the labels of the calculated clusters and outlier. 
Hence, we learn the label and use a predictive learning 
algorithm, i.e. SVM (Support Vector Machine) and Decision 
Tree to predict the label of the newly arrived data. 

 

 
Fig. 4. The concept of core point, border point and outlier. 

 

 
Fig. 5. Support vector points and margin width of hyperplane of SVM. 

 

D. Prediction of outlier 

Support Vector Machine (SVM) is a supervised learning 
algorithm in machine learning which is used for the 
classification problem. The main ideology behind the concept 
of SVM is finding the optimal hyperplane that confidently 
separates different classes [16].  

The closest points to the hyperplane consist the support 
vector points. The distance between the support vector points 
and the hyperplane is called the margin. Fig. 5 shows support 
vector points and margin width of hyperplane for SVM. The 
support vector points play an important role for finding the 
hyperplane that maximizes margin width. All other points are 
irrelevant for finding the hyperplane.    
                                                                                                                             
     Let, n be the number of dimensions. Thus, the equation of 
the hyperplane can be given as the following 

y = w0 + w1x1 + w2x2 + w3x3 + . . . (3) 
                = w0 + ∑ wixi

n
i=1   

                = w0 + wTX  
                = b + wTX  

where y is the outcome, b is the biased term (b = w0), xi are 
the attribute values. The weights wi will be learned by the 
algorithm. In (3) wi are the parameters that will determine the 
hyperplane [17].  
 

Decision Tree is a very popular algorithm for 
classification in machine learning. To develop a tree, we need 
to choose features and conditions for splitting along with 
stopping criteria [18]. For classification, different split point 
is considered using a cost function. The split is selected that 
has the lowest cost. Gini score is considered as a cost function 
for classification. 

G = sum(pk * (1 -  pk)) (4) 
Here, pk is the proportion of same class inputs present in a 

particular group. Gini score decides whether a split is good or 
not by estimating how mixed the response classes are in the 
groups formed by the split. When a group contains all the 
member from the same class then pk is either 0 or 1 and G = 0. 
The performance of Decision Tree can be increased by pruning. 
It involves removing the branch that has less important features. 

As we already generate label using DBSCAN, we train 
the dataset using SVM and Decision Tree. For model 
evaluation confusion matrix, accuracy and precision are used. 
Confusion matrix is used to decide the performance of a 
classification model. Accuracy, precision evaluates the 



 
 

output quality of the classifier. Confusion matrix is formed 
using TP, TN, FP, FN. where, 

 
TP = True Positive   
TN = True Negative  
FP = False Positive  
FN = False Negative  

      
 For calculating accuracy (Acc) and precision (Prec), the 
following formulas are used.  

Accuracy (Acc) = 
TP + TN

TP + TN + FP + FN
 (5) 

             Precision (Prec) = 
TP

TP + FP
 (6) 

 

IV. RESULT ANALYSIS 

      The system is implemented in the python environment 
using ‘scikit-learn’ which is a machine learning library. The 
synthetic dataset that we generated by using (1), it is not 
possible to directly apply a supervised learning algorithm on 
the dataset as it has no label. We standardize the features of 
the dataset by using (2). Then, we apply DBSCAN on the 
dataset with MinPts = 3, radius ɛ = 0.3 and choose Euclidean 
metric for the DBSCAN to perform its clustering.  

Fig. 6 illustrates the result of applying DBSCAN on the 
dataset. Here, the black points represent the outlier. All the 
other colored points are members of different normal classes. 
In addition, Fig. 6 also shows that there are three normal 
classes (class 0, class 1 and class 2).  After performing 
DBSCAN on the dataset, we get the label of the normal data 
as well as the outlier. Now, as we know the label of the dataset, 
we apply supervised learning algorithms i.e. SVM and 
Decision Tree. Fig. 7 depicts the result of applying SVM and 
Decision Tree on the labeled dataset.  

 

 

 

Fig. 6. Result of using DBSCAN (MinPts = 3, radius ɛ = 0.3, metric = 
‘euclidean’) on the dataset. 

Here, SVM and Decision Tree are used as classifier. For 
SVM, three different kernels i.e. linear, radial basis function 
(‘rbf’) and polynomial (‘poly’) are used. Different kernels are 
used to see which kernel can perform better. We used 
confusion matrix, accuracy and precision to evaluate the 
models. Table I and Table II represent the normalized 
confusion matrix for SVM and Decision Tree respectively. 
SVM with linear kernel predicts 50% of the outliers correctly 
and predict 50% as class 1. 

All the other classifiers correctly predict the outlier. As our 
main concern is predicting the outlier, if a classifier predicts 
class 0 as class 1 or class 1 as class 2 it will cause no harm to 
the system. 

 The accuracy and precision are calculated using the (5) 
and (6) respectively. Fig. 8 illustrates the measure of accuracy 
and precision for training and testing phase of different 
classifiers.  Table III contains the summary of accuracy and 
precision of different models. It shows that, in testing phase 
SVM with ‘rbf’ kernel has the highest accuracy and precision 
i.e. 98.61% and 99.60% respectively. Decision Tree classifier 
also performs well in the testing phase with the accuracy of 
97.22% and precision of 94.59%. 

 

    
(a) SVM (kernel = ‘linear’) (b) SVM (kernel = ‘rbf’,  

gamma = 0.5) 
(c) SVM (kernel = ‘poly’,  

degree = 3) 
(d) Decision Tree 

 
     Fig. 7. Result of applying different classifier on the labeled dataset (different colors represent different classes). 

 

 

TABLE I. NORMALIZED CONFUSION MATRIX FOR SVM 

 
SVM (kernel = ‘linear’) SVM (kernel = ‘rbf’, gamma = 0.5) SVM (kernel = ‘poly’, degree = 3) 

outlier class 0 class 1 class 2 outlier class 0 class 1 class 2 outlier class 0 class 1 class 2 

outlier 0.50 0.00 0.50 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

class 0 0.00 0.98 0.00 0.02 0.00 1.00 0.00 0.00 0.00 0.98 0.00 0.02 

class 1 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 

class 2 0.00 0.80 0.00 0.20 0.00 0.20 0.00 0.80 0.00 0.20 0.00 0.80 
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TABLE II. NORMALIZED CONFUSION MATRIX FOR  
DECISION TREE 

 

 
Decision Tree 

outlier class 0 class 1 class 2 

outlier 1.00 0.00 0.00 0.00 

class 0 0.00 0.98 0.00 0.02 

class 1 0.00 0.00 1.00 0.00 

class 2 0.00 0.00 0.20 0.80 

 

 

TABLE III. PERFORMANCE MEASURE INDICES OF OUTLIER 
DETECTION SYSTEM 

Algorithm Kernel 

Training Phase Testing Phase 

Acc 
(%) 

Prec 
(%) 

Acc 
(%) 

Prec 
(%) 

SVM 

Linear 97.68 94.51 91.67 79.71 

RBF 100 100 98.61 99.60 

Polynomial 100 100 97.22 94.59 

Decision 
Tree 

- 100 100 97.22 94.59 

 
From Table III it is evident that if we compare the 

different models that have been employed on the system, 
SVM with ‘rbf’ kernel performs admirably in both training 
and testing phase with respect to other models. 

 

 

(a) Training Phase 

 
(b) Testing Phase 

Fig. 8. Accuracy and precision for training and testing phase of different 
classifiers where L_SVM, R_SVM, P_SVM, DT represent SVM 
(kernel = ‘linear’), SVM (kernel = ‘rbf’), SVM (kernel = ‘poly’), and 
Decision Tree respectively. 

V. CONCLUSIONS 

     Protecting electronic devices from damage is very 
important as most of the devices are expensive. In this 
work, we focused on developing a system that not only 
detects outlier but also predicts whether a new current, 
voltage pair is an outlier or not. For outlier detection, a 
density-based clustering approach DBSCAN is used which 
can detect any arbitrary shaped cluster. Then, we develop 
models based on SVM and Decision Tree. We also provide 
a detailed performance measure for SVM with different 
kernels and Decision Tree. In the testing phase, SVM with 
‘rbf’ kernel ends up with the highest accuracy of 98.61%. 
The performance shows that the proposed system will be 
quite helpful in protecting electronic devices.   
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